1.能为我讲讲芬氏几何起源发展

2.Likelihood Ratio, Wald和Lagrange Multiplier(Score)检验的区别与相似点

3.请看一下这些数据是时间序列数据还是面板数据?

4.请大家告诉我我十位中外数学家及其生平资料(100至150字)

waldx2值代表什么_wald值怎么算

Cox比例风险模型 (考克斯,12年)是常用的统计在医学研究调查的患者和一个或多个预测变量的存活时间之间的关联回归模型。

在上一章 生存分析基础 中,我们描述了生存分析的基本概念以及生存数据的分析和汇总方法,包括:

上述方法-Kaplan-Meier曲线和logrank检验-是 单变量分析的 示例。他们根据调查中的一个因素描述了生存情况,但忽略了其他因素的影响。

此外,仅当预测变量为分类变量时(例如:治疗A与治疗B;男性与女性),Kaplan-Meier曲线和对数秩检验才有用。对于定量预测指标(例如基因表达,体重或年龄),它们并不容易工作。

一种替代方法是Cox比例风险回归分析,它既适用于定量预测变量也适用于类别变量。此外,Cox回归模型扩展了生存分析方法,可以同时评估几种风险因素对生存时间的影响。

在本文中,我们将描述Cox回归模型并提供使用R软件的实际示例。

内容

在临床研究中,有许多情况,其中几个已知量(称为 协变量covariates )可能会影响患者的预后。

例如,设比较了两组患者:有和没有特定基因型的患者。如果其中一组还包含较年长的个体,则生存率的任何差异都可能归因于基因型或年龄,或两者都有。因此,在调查与任何一个因素相关的生存率时,通常需要针对其他因素的影响进行调整。

统计模型是一种常用工具,可以同时分析多个因素的生存率。此外,统计模型还提供了每个因素的影响大小。

考克斯比例风险模型是用于对生存分析数据进行建模的最重要方法之一。下一节介绍Cox回归模型的基础。

该模型的目的是同时评估几个因素对生存的影响。换句话说,它允许我们检查特定因素如何影响特定时间点特定(例如,感染,死亡)的发生率。该比率通常称为风险比率。预测变量(或因子)在生存分析文献中通常称为 协变量 covariates 。

Cox模型由 h(t) 表示的 风险函数 表示。简而言之,危险函数可以解释为在时间t死亡的风险。可以估计如下:

其中:

Cox模型可以被写为变量 x(i)的 危险对数的多元线性回归,而基线危险是随时间变化的“截距”项。

系数 bi 称为危险比率(HR,hazard ratio)。 bi 值大于零,或相当于风险比率大于1,表明随着第 i 个协变量值的增加,风险增加,因此生存时间缩短。

换句话说,风险比大于1表示协变量与概率正相关,因此与存活时间负相关。

总之,

HR=1:无影响

HR<1:危害降低

HR>1:危险增加

在癌症研究中:

Cox模型的关键设是观察组(或患者)的危险曲线应成比例,并且不能交叉。

设两个x值不同的患者k和k'。相应的风险函数可以简单地写成如下:

因此,Cox 模型是一个比例风险模型:任何一组的风险都是其他任何一组风险的常数倍。这一设意味着,如上所述,各组的危险曲线应成比例,不能交叉。

换言之,如果一个人在某个初始时间点的死亡风险是另一个人的两倍,那么在以后的任何时候,死亡风险仍然是另一个人的两倍。

这种比例风险的设应该得到检验。我们将在本系列的下一篇文章中讨论评估比例性的方法: Cox模型设 。

我们将使用两个R包:

函数 coxph ()[在 survival 包中]可用于计算R中的Cox比例风险回归模型。

简化格式如下:

我们将在生存R数据包中使用肺癌数据。

我们将使用以下协变量来拟合Cox回归:年龄,性别,ph.ecog和wt.loss。

我们首先为所有这些变量计算单变量Cox分析。然后我们将使用两个变量来拟合多元Cox分析,以描述这些因素如何共同影响生存。

单变量Cox分析的计算公式如下:

Cox模型的功能 摘要 ()产生更完整的报告:

Cox回归结果可以解释为:

要将单变量coxph函数一次应用于多个协变量,请输入以下命令:

上面的输出显示了每个变量相对于总生存率的回归beta系数,效应大小(以危险比给出)和统计显着性。通过单独的单变量Cox回归评估每个因素。

从上面的输出中,

现在,我们要描述这些因素如何共同影响生存。为了回答这个问题,我们将执行多元Cox回归分析。由于变量ph.karno在单变量Cox分析中不重要,因此在多变量分析中将其跳过。我们将3个因素(性别,年龄和ph.ecog)纳入多元模型。

时间常数协变量的死亡时间的Cox回归指定如下:

所有三个总体测试(似然性,Wald和得分)的p值均显着,表明该模型具有显著性。这些测试评估了所有beta的综合零设为0。在上面的示例中,检验统计量非常一致,并且完全拒绝了综合零设。

在多变量Cox分析中,协变量性别和ph.ecog保持显着性(p <0.05)。但是,协变量年龄不显着(p = 0.23,大于0.05)。

性别的p值为0.000986,危险比HR = exp(coef)= 0.58,表明患者的性别与死亡风险降低之间有很强的关系。协变量的危险比可解释为对危险的倍增效应。例如,保持其他协变量不变(女性(性别= 2))可将危险降低0.58或42%。我们得出结论,成为女性与良好的预后相关。

同样,ph.ecog的p值为4.45e-05,危险比HR = 1.59,表明ph.ecog值与死亡风险增加之间有很强的关系。保持其他协变量不变,ph.ecog的值越高,生存率越低。

相比之下,年龄的p值现在为p = 0.23。危险比HR = exp(coef)= 1.01,95%置信区间为0.99至1.03。由于HR的置信区间为1,因此这些结果表明,在调整phog值和患者的性别之后,年龄对HR差异的贡献较小,并且仅趋于显着。例如,在其他协变量保持不变的情况下,再增加一岁会引起每日死亡危险,其系数为expβ= 1.01或1%,这并不是一个重要的贡献。

将Cox模型拟合到数据后,就可以可视化特定风险组在任何给定时间点的预测生存率。函数 survfit ()估计生存比例,默认情况下为协变量的平均值。

我们不妨展示估计的生存率如何取决于目标协变量的值。

考虑到这一点,我们想评估性别对估计生存率的影响。在这种情况下,我们用两行构造一个新的数据帧,每一行代表性别。其他协变量固定为其平均值(如果是连续变量)或最低水平(如果它们是离散变量)。对于伪协变量,平均值为数据集中编码为1的比例。该数据帧通过 newdata 参数传递给 survfit ():

在本文中,我们描述了Cox回归模型,用于同时评估多种风险因素与患者生存时间之间的关系。我们演示了如何使用 生存 包计算Cox模型。此外,我们描述了如何使用 survminer 软件包来可视化分析结果。

能为我讲讲芬氏几何起源发展

stata命令大全

********* 面板数据计量分析与软件实现 *********

说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。本人做了一定的修改与筛选。

*----------面板数据模型

* 1.静态面板模型:FE 和RE

* 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计)

* 3.异方差、序列相关和截面相关检验

* 4.动态面板模型(DID-GMM,SYS-GMM)

* 5.面板随机前沿模型

* 6.面板协整分析(FMOLS,DOLS)

*** 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。

* 生产效率分析(尤其指TFP):数据包络分析(DEA)与随机前沿分析(A)

***

说明:DEA由DEAP2.1软件实现,A由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。常应用于地区经济差异、FDI溢出效应(Spillovers

Effect)、工业行业效率状况等。

* 空间计量分析:SLM模型与SEM模型

*说明:STATA与Matlab结合使用。常应用于空间溢出效应(R&D)、财政分权、地方公共行为等。

* ---------------------------------

* -------- 一、常用的数据处理与作图 -----------

* ---------------------------------

* 指定面板格式

xtset id year (id为截面名称,year为时间名称)

xtdes /*数据特征*/

xtsum logy h /*数据统计特征*/

sum logy h /*数据统计特征*/

*添加标签或更改变量名

label var h "人力资本"

rename h hum

*排序

sort id year /*是以STATA面板数据格式出现*/

sort year id /*是以DEA格式出现*/

*删除个别年份或省份

drop if year<1992

drop if id==2 /*注意用==*/

*如何得到连续year或id编号(当完成上述操作时,year或id就不连续,为形成panel格式,需要用egen命令)

egen year_new=group(year)

xtset id year_new

**保留变量或保留观测值

keep inv /*删除变量*/

**或

keep if year==2000

**排序

sort id year /*是以STATA面板数据格式出现

sort year id /*是以DEA格式出现

**长数据和宽数据的转换

*长>>>宽数据

reshape wide logy,i(id) j(year)

*宽>>>长数据

reshape logy,i(id) j(year)

**追加数据(用于面板数据和时间序列)

xtset id year

*或者

xtdes

tsend,add(5) /表示在每个省份再追加5年,用于面板数据/

tsset

*或者

tsdes

.tsend,add(8) /表示追加8年,用于时间序列/

*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)

bysort year:corr Y X Z,cov

**生产虚拟变量

*生成年份虚拟变量

tab year,gen(yr)

*生成省份虚拟变量

tab id,gen(dum)

**生成滞后项和差分项

xtset id year

gen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/

gen ylag2=L2.y

gen dy=D.y /*产生差分项*/

*求出各省2000年以前的open inv的平均增长率

collapse (mean) open inv if year<2000,by(id)

变量排序,当变量太多,按规律排列。可用命令

aorder

或者

order fdi open insti

*-----------------

* 二、静态面板模型

*-----------------

*--------- 简介 -----------

* 面板数据的结构(兼具截面资料和时间序列资料的特征)

use product.dta, clear

browse

xtset id year

xtdes

* ---------------------------------

* -------- 固定效应模型 -----------

* ---------------------------------

* 实质上就是在传统的线性回归模型中加入 N-1 个虚拟变量,

* 使得每个截面都有自己的截距项,

* 截距项的不同反映了个体的某些不随时间改变的特征

*

* 例如: lny = a_i + b1*lnK + b2*lnL + e_it

* 考虑中国29个省份的C-D生产函数

*******-------画图------*

*散点图+线性拟合直线

twoway (scatter logy h) (lfit logy h)

*散点图+二次拟合曲线

twoway (scatter logy h) (qfit logy h)

*散点图+线性拟合直线+置信区间

twoway (scatter logy h) (lfit logy h) (lfitci logy h)

*按不同个体画出散点图和拟合线,可以以做出fe vs re的初判断*

twoway (scatter logy h if id<4) (lfit logy h if id<4) (lfit logy h if

id==1) (lfit logy h if id==2) (lfit logy h if id==3)

*按不同个体画散点图,so beautiful!!!*

graph twoway scatter logy h if id==1 || scatter logy h if id==2,msymbol(Sh)

|| scatter logy h if id==3,msymbol(T) || scatter logy h if id==4,msymbol(d) || ,

legend(position(11) ring(0) label(1 "北京") label(2 "天津") label(3 "河北") label(4

"山西"))

**每个省份logy与h的散点图,并将各个图形合并

twoway scatter logy h,by(id) ylabel(,format(%3.0f))

xlabel(,format(%3.0f))

*每个个体的时间趋势图*

xtline h if id<11,overlay legend(on)

* 一个例子:中国29个省份的C-D生产函数的估计

tab id, gen(dum)

list

* 回归分析

reg logy logk logl dum*,

est store m_ols

xtreg logy logk logl, fe

est store m_fe

est table m_ols m_fe, b(%6.3f) star(0.1 0.05 0.01)

* Wald 检验

test logk=logl=0

test logk=logl

* stata的估计方法解析

* 目的:如果截面的个数非常多,那么用虚拟变量的方式运算量过大

* 因此,要寻求合理的方式去除掉个体效应

* 因为,我们关注的是 x 的系数,而非每个截面的截距项

* 处理方法:

*

* y_it = u_i + x_it*b + e_it (1)

* ym_i = u_i + xm_i*b + em_i (2) 组内平均

* ym = um + xm*b + em (3) 样本平均

* (1) - (2), 可得:

* (y_it - ym_i) = (x_it - xm_i)*b + (e_it - em_i) (4) /*within estimator*/ *

(4)+(3), 可得:

* (y_it-ym_i+ym) = um + (x_it-xm_i+xm)*b + (e_it-em_i+em)

* 可重新表示为:

* Y_it = a_0 + X_it*b + E_it

* 对该模型执行 OLS 估计,即可得到 b 的无偏估计量

**stata后台操作,揭开fe估计的神秘面纱!!!

egen y_meanw = mean(logy), by(id) /*个体内部平均*/

egen y_mean = mean(logy) /*样本平均*/

egen k_meanw = mean(logk), by(id)

egen k_mean = mean(logk)

egen l_meanw = mean(logl), by(id)

egen l_mean = mean(logl)

gen dyw = logy - y_meanw

gen dkw = logk - k_meanw

gen dlw=logl-l_meanw

reg dyw dkw dlw,nocons

est store m_stata

gen dy = logy - y_meanw + y_mean

gen dk = logk - k_meanw +k_mean

gen dl=logl-l_meanw+l_mean

reg dy dk dl

est store m_stata

est table m_*, b(%6.3f) star(0.1 0.05 0.01)

* 解读 xtreg,fe 的估计结果

xtreg logy h inv gov open,fe

*-- R^2

* y_it = a_0 + x_it*b_o + e_it (1) pooled OLS

* y_it = u_i + x_it*b_w + e_it (2) within estimator

* ym_i = a_0 + xm_i*b_b + em_i (3) between estimator

*

* --> R-sq: within 模型(2)对应的R2,是一个真正意义上的R2

* --> R-sq: between corr{xm_i*b_w,ym_i}^2

* --> R-sq: overall corr{x_it*b_w,y_it}^2

*

*-- F(4,373) = 855.93检验除常数项外其他解释变量的联合显著性

*

*

*-- corr(u_i, Xb) = -0.2347

*

*-- sigma_u, sigma_e, rho

* rho = sigma_u^2 / (sigma_u^2 + sigma_e^2)

dis e(sigma_u)^2 / (e(sigma_u)^2 + e(sigma_e)^2)

*

* 个体效应是否显著?

* F(28, 373) = 338.86 H0: a1 = a2 = a3 = a4 = a29

* Prob > F = 0.0000 表明,固定效应高度显著

*---如何得到调整后的 R2,即 adj-R2 ?

ereturn list

reg logy h inv gov open dum*

*---拟合值和残差

* y_it = u_i + x_it*b + e_it

* predict newvar, [option]

/*

xb xb, fitted values; the default

stdp calculate standard error of the fitted values

ue u_i + e_it, the combined residual

xbu xb + u_i, prediction including effect

u u_i, the fixed- or random-error component

e e_it, the overall error component */

xtreg logy logk logl, fe

predict y_hat

predict a , u

predict res,e

predict cres, ue

gen ares = a + res

list ares cres in 1/10

* ---------------------------------

* ---------- 随机效应模型 ---------

* ---------------------------------

* y_it = x_it*b + (a_i + u_it)

* = x_it*b + v_it

* 基本思想:将随机干扰项分成两种

* 一种是不随时间改变的,即个体效应 a_i

* 另一种是随时间改变的,即通常意义上的干扰项 u_it

* 估计方法:FGLS

* Var(v_it) = sigma_a^2 + sigma_u^2

* Cov(v_it,v_is) = sigma_a^2

* Cov(v_it,v_js) = 0

* 利用Pooled OLS,Within Estimator, Between Estimator

* 可以估计出sigma_a^2和sigma_u^2,进而用GLS或FGLS

* Re估计量是Fe估计量和Be估计量的加权平均

* yr_it = y_it - theta*ym_i

* xr_it = x_it - theta*xm_i

* theta = 1 - sigma_u / sqrt[(T*sigma_a^2 + sigma_u^2)]

* 解读 xtreg,re 的估计结果

use product.dta, clear

xtreg logy logk logl, re

*-- R2

* --> R-sq: within corr{(x_it-xm_i)*b_r, y_it-ym_i}^2

* --> R-sq: between corr{xm_i*b_r,ym_i}^2

* --> R-sq: overall corr{x_it*b_r,y_it}^2

* 上述R2都不是真正意义上的R2,因为Re模型用的是GLS估计。

*

* rho = sigma_u^2 / (sigma_u^2 + sigma_e^2)

dis e(sigma_u)^2 / (e(sigma_u)^2 + e(sigma_e)^2)

*

* corr(u_i, X) = 0 (assumed)

* 这是随机效应模型的一个最重要,也限制该模型应用的一个重要设

* 然而,用固定效应模型,我们可以粗略估计出corr(u_i, X)

xtreg market invest stock, fe

*

* Wald chi2(2) = 10962.50 Prob> chi2 = 0.0000

*-------- 时间效应、模型的筛选和常见问题

*---------目录--------

* 7.2.1 时间效应(双向固定(随机)效应模型)

* 7.2.2 模型的筛选

* 7.2.3 面板数据常见问题

* 7.2.4 面板数据的转换

* ----------------------------------

* ------------时间效应--------------

* ----------------------------------

* 单向固定效应模型

* y_it = u_i + x_it*b + e_it

* 双向固定效应模型

* y_it = u_i + f_t + x_it*b + e_it

qui tab year, gen(yr)

drop yr1

xtreg logy logk logl yr*, fe

* 随机效应模型中的时间效应

xtreg logy logk logl yr*, fe

* ---------------------------------

* ----------- 模型的筛选 ----------

* ---------------------------------

* 固定效应模型还是Pooled OLS?

xtreg logy logk logl yr*, fe /*Wald 检验*/

qui tab id, gen(dum) /*LR检验*/

reg logy logk logl /*POLS*/

est store m_ols

reg logy logk logl dum*,nocons

est store m_fe

lrtest m_ols m_fe

est table m_*, b(%6.3f) star(0.1 0.05 0.01)

* RE vs Pooled OLS?

* H0: Var(u) = 0

* 方法一:B-P 检验

xtreg logy logk logl, re

xttest0

* FE vs RE?

* y_it = u_i + x_it*b + e_it

*--- Hausman 检验 ---

* 基本思想:如果 Corr(u_i,x_it) = 0, Fe 和 Re 都是一致的,但Re更有效

* 如果 Corr(u_i,x_it)!= 0, Fe 仍然有效,但Re是有偏的

* 基本步骤

***情形1:huasman为正数

xtreg logy logk logl, fe

est store m_fe

xtreg logy logk logl, re

est store m_re

hausman m_fe m_re

*** 情形2:

qui xtreg logy h inv gov open,fe

est store fe

qui xtreg logy h inv gov open,re

est store re

hausman fe re

* Hausman 检验值为负怎么办?

* 通常是因为RE模型的基本设 Corr(x,u_i)=0 无法得到满足

* 检验过程中两个模型的方差-协方差矩阵都用Fe模型的

hausman fe re, sigmaless

* 两个模型的方差-协方差矩阵都用Re模型的

hausman fe re, sigmamore

*== 为何有些变量会被drop掉?

use nlswork.dta, clear

tsset idcode year

xtreg ln_wage hours tenure ttl_exp, fe /*正常执行*/

* 产生种族虚拟变量

tab race, gen(dum_race)

xtreg ln_wage hours tenure ttl_exp dum_race2 dum_race3, fe

* 为何 dum_race2 和 dum_race3 会被 dropped ?

* 固定效应模型的设定:y_it = u_i + x_it*b + e_it (1)

* 由于个体效应 u_i 不随时间改变,

* 因此若 x_it 包含了任何不随时间改变的变量,

* 都会与 u_i 构成多重共线性,Stata会自动删除之。

*******异方差、序列相关和截面相关问题

* ---------------- 简 介 -------------

* y_it = x_it*b + u_i + e_it

*

* 由于面板数据同时兼顾了截面数据和时间序列的特征,

* 所以异方差和序列相关必然会存在于面板数据中;

* 同时,由于面板数据中每个截面(公司、个人、国家、地区)之间还可能存在内在的联系, * 所以,截面相关性也是一个需要考虑的问题。

*

* 此前的分析依赖三个设条件:

* (1) Var[e_it] = sigma^2 同方差设

* (2) Corr[e_it, e_it-s] = 0 序列无关设

* (3) Corr[e_it, e_jt] = 0 截面不相关设

*

* 当这三个设无法得到满足时,便分别出现 异方差、序列相关和截面相关问题; * 我们一方面要用各种方法来检验这些设是否得到了满足;

* 另一方面,也要在这些设无法满足时寻求合理的估计方法。

* ---------------- 设检验 -------------

*== 组间异方差检验(截面数据的特征)

* Var(e_i) = sigma_i^2

* Fe 模型

xtreg logy logk logl, fe

xttest3

* Re 模型

* Re本身已经较大程度的考虑了异方差问题,主要体现在sigma_u^2上

*== 序列相关检验

* Fe 模型

* xtserial Wooldridge(2002),若无序列相关,则一阶差分后残差相关系数应为-0.5

xtserial logy logk logl

xtserial logy logk logl, output

* Re 模型

xtreg logy logk logl, re

xttest1 /*提供多个统计检验量*/

*== 截面相关检验

* xttest2命令 H0: 所有截面残差的相关系数都相等

xtreg logy logk logl, fe

xttest2

* 由于检验过程中执行了SUE估计,所以要求T>N

xtreg logy logk logl if id<6, fe

xttest2

* xtcsd 命令(提供了三种检验方法)

xtreg logy logk logl, fe

xtcsd , pesaran /*Pesaran(2004)*/

xtcsd , friedman /*Friedman(1937)*/

xtreg logy logk logl, re

xtcsd , pesaran

* ----------------- 估计方法 ---------------------

*== 异方差稳健型估计

xtreg logy h inv gov open, fe robust

est store fe_rb

xtreg logy h inv gov open, fe robust

est store fe

* 结果对比

esttab fe_rb fe, b(%6.3f) se(%6.3f) mtitle(fe_rb fe)

*== 序列相关估计

* 一阶自相关 xtregar, fe/re

* 模型: y_it = u_i + x_it*b + v_it (1)

* v_it = rho*v_it-1 + z_it (2)

xtregar logy h inv gov open, fe

est store fe_ar1

xtregar logy h inv gov open,fe lbi /*Baltagi-Wu LBI test*/

Likelihood Ratio, Wald和Lagrange Multiplier(Score)检验的区别与相似点

芬氏几何又叫芬斯勒几何。

1 历史沿革

1854年,黎曼著名演讲[1]发展了一类基于弧长元素ds=F(x1,…,xn,dx1,…,dxn)的度量几何(最初叫广义度量空间理论).一个重要的特殊情形是F2(x,dx)=gij(x)dxidxj.由此确定的几何即是被后人命名的黎曼几何.黎曼在黎曼几何中引进了曲率概念,推广了高斯在二维曲面上的工作.对于一般的广义度量,黎曼给出了一个具体例子:

F(x,y)={(y1)4+…+(yn)4}1/4,y=dx.

黎曼断言基于这种广义度量的微分几何能够像黎曼几何一样得到发展,但他认为计算将非常复杂,因此很难对微分不变量赋予恰当的几何意义.最终黎曼只研究了具有二次型限制的度量,即黎曼度量.1900年,Hilbert在巴黎发表了关于23个数学问题的著名演讲,一般情形的广义度量空间理论包含在第23个问题“变分法”中.在随后的几年中,一些数学家从变分法的几何处理出发研究了广义度量.其中的主要代表人物就是G.Landsberg,他在1907年引入了后来被L.Berwald称为Landsberg曲率的几何量,这是芬斯勒几何中的第一个非黎曼几何量.

1918年,芬斯勒(Paul Finsler,1894-10)在哥延根大学完成了他的博士论文.在论文中,芬斯勒研究了广义度量,引入了所谓的基本张量gij(x,y)=(2F2/yiyi)/2,和C-张量(我们现在称为Cartan张量)

Cijk(x,y)=(gij/yk)/2.在黎曼几何情形,gij(x,y)正是基本张量gij(x).Cartan张量是非常重要的,因为它刻划了一个芬斯勒流形偏离黎曼流形的程度.事实上,一分芬斯勒度量是黎曼度量的充分必要条件是Cartan张量恒为零.1927年,J.H.Taylor将广义度量空间的几何称为芬斯勒几何(现在人们也称其为黎曼-芬斯勒几何).

对芬斯勒几何真正作出重要贡献的第一位数学家应该是Ludwig Berwald(1883-1942),他是第一个在芬斯勒空间中引入联络并将黎曼几何中的黎曼曲率推广到芬斯勒几何中的数学家[2,3].Berwald联络满足无挠(torsionfree)条件但并不与度量相容.Berwald的贡献还在于:(1)利用Berwald联络刻划了Landsberg曲率,定义了Landsberg空间[3].(2)引入了一类重要的、他称之为仿射连通空间的芬斯勒空间(1925年)(1938年,V.V.Wagner命名这类空间为Berwald空间).黎曼空间和局部Minkowski空间均是特殊的Berwald空间.1981年,Szabó证明了:除黎曼空间和Minkowski空间外,恰好存在54类不可约和整体对称非黎曼Berwald空间,使得所有其它单连通和完备的Berwald空间都能整体地分解为上述56种空间的笛卡尔积[4].(3)研究和发展了二维芬斯勒空间理论(1927年,1941年).(4)在他身后发表的论文(1947年)中,他定义和讨论了具有标量旗曲率和常数旗曲率的芬斯勒度量,开创了芬斯勒几何中的一个重要研究领域.

1933年,法国著名数学家Elie Cartan(1869-1951)发表了他的第一篇关于芬斯勒几何的论文,主题是关于芬斯勒度量的共形变换的若干注记,同时预告了他的确定一个芬斯勒空间联络的公理系统.1934年,Cartan发表了他关于芬斯勒几何的著名论文[5],详细介绍了他的确定芬斯勒空间联络(我们称之为Cartan联络)的公理系统.Cartan引入了线性元(line element)空间(即射影化切丛PTM)概念,将他的欧氏联络理论推广到了芬斯勒空间.Cartan联络不满足无挠条件,但与芬斯勒度量是相容的.Cartan联络与Berwald联络及其相应的各类曲率张量对后来的芬斯勒几何研究产生了重要影响,并促进了芬斯勒几何在物理学、生物(态)学等领域中的应用研究.1941年,G.Randers从广义相对论的研究中引出了一个形如F(x,y)=α(x,y)+β(x,y)的芬斯勒度量,其中α(x,y)为一个黎曼度量,代表引力场;β(x,y)=bi(x)yi为一个1-形式,代表电磁场.Randers度量在电子显微镜及统一场论等领域的研究中有重要应用,在芬斯勒几何的研究中也扮演了一个非常重要的角色.

对任意芬斯勒流形(M,F)在PTM上有一个整体定义的微分形式ω:=Fyidxi,称为Hilbert形式.(M,F)上曲线的长度恰由ω的积分给出.1943年,数学大师陈省身教授从Hilbert形式的外微分出发研究了芬斯勒空间中的欧氏联络,构造了我们现在称之为Chern联络的一类重要联络[6].Chern联络满足无挠条件且与度量几乎相容,这也使得它在芬斯勒几何的研究中具有独到的优势.1948年,陈省身教授解决了芬斯勒流形的局部等价性问题:怎样才能确定两个已知的芬斯勒度量结构只差一个坐标变换?这一问题的解决再次涉及到了芬斯勒空间中的欧氏联络及其曲率[7].利用Chern联络,人们已将黎曼几何中的许多重要定理推广到了芬斯勒空间,并从其结构方程出发得到了许多芬斯勒流形的非黎曼几何性质(如见[8]).

在二十世纪五十年代至六十年代初,有两位数学家是值得一提的.一位是Herbert Busemann,他研究和讨论了芬斯勒空间的体积形式,为人们研究芬斯勒空间的体积比较定理、探讨芬斯勒流形的整体性质奠定了基础;他还强调了研究Minkowski何的重要性,扩展了人们对芬斯勒空间的认识.另一位是南非数学家Hanno Rund,他是这一时期在芬斯勒几何领域的一位代表人物.H.Rund的著作[9]曾激励了许多年轻数学家开始研究芬斯勒几何.在这一时期还崛起了两个重要的芬斯勒几何研究群体:以Berwald的学生O.Varga为代表的匈牙利研究群体和以T.Okada及M.Matsumoto为代表的日本研究群体,他们的研究工作对后来芬斯勒几何的发展产生了深刻影响.

当我们在回顾芬斯勒几何的发展历程时,也应该注意到这样一个事实:自芬斯勒几何在1918年诞生之后的近七十年间,芬斯勒几何没有得到像黎曼几何那样的繁荣和普及,许多重要内容并未得到人们的重视.一个主要原因是由于计算的相对复杂性,一个简单的公式往往会随着计算的深入很快变得非常复杂,客观上制约了芬斯勒几何的发展.另一个主要的原因是,当时的许多几何学家只是把芬斯勒空间片面地看作黎曼空间的推广而仅仅致力于将黎曼几何中的结果推广到芬斯勒几何,却对芬斯勒几何中的非黎曼几何量(即那些在黎曼流形上为零的几何量)认识不足,忽略了对芬斯勒几何中那些与黎曼几何不同的性质和结构的研究.的是这种状况从上世纪九十年代初开始有了根本的变化.这首先要感谢数学大师陈省身先生的大力倡导和鼓励.凭着对芬斯勒几何的深刻理解和洞察力,陈先生与美籍华人数学家沈忠民及D.Bao等人在这一时期发表了一系列重要成果(如见[8,10]),将芬斯勒几何带入了一个真正繁荣的时期.同时,我们已处在一个科技时代,运用计算机进行符号计算和大规模计算已成为现实,这极大地促进了对芬斯勒几何的研究.如人们已构造出大量具有重要曲率性质的芬斯勒度量,为对芬斯勒度量进行深入研究提供了重要启示和支撑.近年来,芬斯勒几何得到快速而长足的发展.芬斯勒几何中的各种曲率(黎曼几何量与非黎曼几何量)已得到广泛关注和研究,它们对芬斯勒空间结构的影响也越来越为人们所理解(如见[11]).与此同时,芬斯勒几何的理论与方法在数学及其它众多自然科学领域中的应用价值也日益突出(如见[12,13]).芬斯勒几何已显现出充满勃勃生机的发展势头.

2 芬斯勒几何的若干重要进展

芬斯勒几何中的旗曲率(flag curvature)是黎曼几何中截面曲率的自然拓广.给定流形M上的一个芬斯勒度量F,旗曲率是切平面P和P中方向y的函数K=K(P,y).如果旗曲率只是切丛TM\{0}上的标量函数K=K(x,y),我们称F具有标量旗曲率(scalar flag curvagure).特别地,若K=常数,我们称F具有常数旗曲率.芬斯勒几何中的一个重要问题是研究和刻划具有标量(常数)旗曲率的芬斯勒度量,这也是芬斯勒几何学家十分关注的一个热点问题.芬斯勒几何中与此相关的另一重要问题是研究和刻划射影平坦芬斯勒度量,这是正则情形下的Hilbert第四问题.一个重要的基本事实是:射影平坦芬斯勒度量必然具有标量旗曲率.在黎曼几何情形,Beltrami证明了:一个黎曼度量是射影平坦的充分必要条件是它具有常曲率.然而,我们可以找到无穷多个具有标量(常数)旗曲率的芬斯勒度量,它们是非射影平坦的.人们也已找到了许多具有标量旗曲率的芬斯勒度量,它们的旗曲率不是常数.这表明刻划和分类具有标量(常数)旗曲率的芬斯勒度量的工作远比黎曼几何情形复杂,其内容也比黎曼几何情形要丰富得多.由于计算的相对复杂性,对特殊情形的研究和例子在芬斯勒几何中是非常重要的.芬斯勒几何学家首先对Randers度量作了大量深入研究.2003年,美籍华人数学家沈忠民(Z.Shen)首先完成了对射影平坦且具有常数旗曲率的Randers度量的分类;然后,他又分别利用Taylor展开式和代数方程刻划了射影平坦且具有常数旗曲率的芬斯勒度量的局部度量结构;在此基础上,沈忠民与D.Bao等人运用黎曼流形上的Zermelo导航术完成了对具有常数旗曲率的Randers度量的分类(见[11]).日本数学家M.Matsumoto等人也对具有常数旗曲率的Randers度量的分类作了大量工作(如见[13]).进一步,人们研究了一类比Randers度量更一般化且在生物(态)学、物理学等领域中有重要背景的芬斯勒度量——(α,β)-度量.(α,β)-度量是一类非常丰富的可计算的芬斯勒度量,它们在芬斯勒几何中扮演了一个非常重要的角色.近年来,人们之所以能对芬斯勒几何中的各种曲率展开研究并能更好地理解其几何意义,这要部分地归功于对(α,β)-度量的研究.人们目前已完全确定了某些重要而特殊的射影平坦且具有常数旗曲率的(α,β)-度量的局部结构,为确定一般的射影平坦且具有常数旗曲率的芬斯勒度量的局部结构提供了有力支撑,也丰富了这一领域的研究内容.

在芬斯勒几何中存在若干重要的几何量(如(平均)Cartan张量、S曲率、(平均)Landsberg曲率、(平均)Berwald曲率等),它们在黎曼空间中是等于零的,因而被称为非黎曼几何量.我们说,黎曼几何量(如旗曲率,Ricci曲率等)刻划空间的形状,而非黎曼几何量则描述空间的“色彩”.已有的研究表明:芬斯勒度量的旗曲率与非黎曼几何量有密切联系.因此,在研究具有标量(常数)曲率的芬斯勒度量的结构和性质的时候,人们自然地要考虑度量所满足的某种非黎曼曲率(几何量)性质.华人数学家在这一领域的研究中得到了一系列重要结果:刻划了具有标量旗曲率且具有迷向S曲率的芬斯勒度量的旗曲率,并首先完成了对局部射影平坦且具有迷向S曲率的Randers度量的分类;更一般地,运用Zermelo导航术思想,完成了对具有标量旗曲率且具有迷向S曲率的Randers度量的分类;进而又完成了对局部射影平坦且具有迷向S曲率的芬斯勒度量的分类.人们也对具有其它非黎曼曲率性质(如具有相对迷向的(平均)Landsberg曲率)的芬斯勒度量作了大量研究,得到了一系列富有意义的成果.有关这方面的工作可参见[11,14,15].这一方向的研究正方兴未艾,对深入研究具有标量(常数)旗曲率的芬斯勒度量的结构和性质有重要意义,对揭示这类度量的神秘面纱必将产生深远的影响.

芬斯勒几何学家在刻划芬斯勒度量局部结构方面取得的成果为研究芬斯勒度量的整体性质奠定了重要基础,为对芬斯勒度量作整体分析提供了大量例子.近十几年来,芬斯勒几何学家对芬斯勒度量的整体性质作了大量研究,并取得了一系列重要结果(参见[8,16,17]).如关于常旗曲率芬斯勒空间的整体结构,法国籍伊朗裔数学家AkbarZadeh证明了:在紧致流形上,任何具有负常数旗曲率的芬斯勒度量一定是黎曼度量,任何旗曲率为0的芬斯勒度量一定是局部Minkowski度量.进一步,莫小欢与沈忠民证明了:在维数大于2的紧致芬斯勒流形上,若芬斯勒度量具有标量旗曲率且其旗曲率是负的,则芬斯勒度量一定是Randers度量[18](这也说明了研究Randers度量的重要性).另一方面,作为研究芬斯勒度量整体性质的重要基础,人们对芬斯勒几何中若干重要的比较定理作了深入研究.我们知道,在黎曼几何中,BishopGromov体积比较定理在黎曼流形的整体微分几何中扮演了一个非常重要的角色.19年,沈忠民引入了S-曲率(即mean covariation),建立了一个关于芬斯勒度量的体积比较定理,将黎曼几何中的BishopGromov体积比较定理推广到了芬斯勒流形,并得到了若干关于芬斯勒流形的准紧性(percompactness)和有限性(finiteness)定理.他还进一步研究了S曲率为0的完备芬斯勒流形的共轭半径的重要性质.另一方面,相对于芬斯勒度量的局部性质而言,目前人们对芬斯勒度量整体性质的研究仍远远不够,对芬斯勒度量整体性质的认识还不够丰富.可以肯定,芬斯勒度量的整体性质必将是几何学家们的新的研究热点.

芬斯勒子流形几何是芬斯勒几何的重要组成部分,是芬斯勒几何学家长期关注的重点之一.人们一直在努力探求芬斯勒子流形的局部与整体结果,进而促使人们更好地理解芬斯勒流形的结构与性质,并已取得了一些重要成果.如沈忠民于1998年引入了芬斯勒子流形的平均曲率与法曲率概念,得到了关于Minkowski空间中子流形的若干的整体结果,并以n维欧氏空间为底流形构造出了一个芬斯勒度量,使得相应的芬斯勒流形不可能等距地嵌入到任何Minkowski空间中.同时,人们对Minkowski空间中子流形的若干其它重要问题也开展了卓有成效的研究工作.但就总体而言,对芬斯勒子流形几何的研究并没有与黎曼子流形几何同步,还有很多重要问题未得到应有的重视和研究,有待几何学家去探索和耕耘.

近几年来,中国数学家也在研究芬斯勒流形的调和映照方面取得了若干重要进展.同时,来自芬斯勒几何的整体(通常是非线性的)分析问题也在挑战着从事几何分析的数学家们.

3 展望

由于芬斯勒几何中相对复杂的计算,刻划具有标量旗曲率的芬斯勒度量的工作还远未彻底完成,很多具有标量旗曲率的芬斯勒度量的分类工作还没有做.即使对具有常数旗曲率的芬斯勒度量,人们也远未完成其分类的工作.因此,研究和刻划具有标量(常数)旗曲率的芬斯勒度量的性质和结构仍然是芬斯勒几何发展中的一个重点.根据目前芬斯勒几何的发展趋势可以预计,人们将在不久的将来构造出更多的满足一定曲率条件的芬斯勒度量的例子,并完成对某些具有重要应用背景且具有特殊曲率性质的(α,β)-度量的分类.在此基础上,人们将逐步完成对具有标量旗曲率且具有某些特殊曲率性质的芬斯勒度量的分类,具有标量旗曲率的芬斯勒度量的神秘面纱将逐渐被人们揭开.

芬斯勒度量的整体几何与拓扑性质将是芬斯勒几何的另一个研究热点.这一方向的研究包括:进一步揭示非黎曼几何量对芬斯勒度量整体结构和旗曲率的影响,深入研究具有标量旗曲率的芬斯勒度量的整体结构,对芬斯勒度量作整体分析并研究芬斯勒度量的刚性,探究Ricci曲率与芬斯勒流形拓扑的关系,特别是研究和揭示Einstein度量空间的拓扑结构等.目前人们已知的芬斯勒度量的局部性质及大量具有重要价值的例子将为这一领域的研究提供强有力的支撑.我们可以期待在这一领域会有一系列重要进展.

芬斯勒子流形几何对丰富芬斯勒几何理论富有重要价值.这一领域的研究内容是令人向往的.如关于黎曼流形的切丛与单位切球丛的几何及黎曼流形上的极小或调和单位向量场已被广泛研究和讨论,并且仍是前沿研究的一个热点之一.但在芬斯勒几何情形,相应的内容还没有得到足够的重视,相关结果还很少.因此,芬斯勒几何学家将在未来的研究工作中深入研究芬斯勒流形的切丛与单切球丛的几何,并深入研究芬斯勒流形上的极小或调和单位向量场,探讨极小子流形与调和映照的联系以及它们的几何变分特征,在一定的曲率条件下讨论调和映照的稳定性.这些内容都是十分重要和有趣的课题.

当然,要对芬斯勒几何的未来作出一个准确、全面的预测是非常困难的.这里,我们不妨借用陈省身先生的一个观点来结束本文:“整体黎曼几何在二十世纪后半叶得到了巨大的发展.我相信,在二十一世纪,微分几何的主要部分应是黎曼-芬斯勒几何.”

参考文献

[1]B.Riemann,Uber die Hypothesen,welche der Geometrie zugrund liegen,1854.English trandlation from M.Spivak,A Comprehensive Introduction to Differential Geometiy(second edition),vol.2,135-153,Publish or Perish,19.

[2]L.Berwald,Untersuchung der Krümmung allgemeiner metrischer Rume auf Grund des in ihnen herrschenden Parallelismus,Math.Z.25(1926),40-73.

[3]L.Berwald,Parallelübertragung in allgemeinen Rumen,Atti Congr.Intern.Mat.Bologna 4(1928),263-270.

[4]Z.I.Szabó,Positive definite Berwald spaces,Tensor,N.S.,35(1981),25-39.

[5]E.Cartan,Les espaces de Finsler,Actualités 79,Paris,1934.

[6]S.S.Chern,On the Euclidean connections in a Finsler space, Proceedings of the National Academy of Sciences, 29(1)(1943),33-37.

[7]S.S.Chern,Local equivalence and euclidean connections in Finsler spaces, Science Reports Tsing Hua Univ.5(1948),95-121.

[8]D.Bao,S.S.Chern and Z.Shen,An introduction to Riemann-Finsler geometry, pringer, Graduate Texts in Mathematics 200,2000.

[9]H.Rund,The differential geometry of Finsler spaces, Springer-Verlag,1959.

[10]Z.Shen,Differential geometry of spary and Finsler spaces,Kluwer Academic ublishers, 2001.

[11]S.S.Chern and Z.Shen,Riemann-Finsler Geometry, Nankai Tracts in Mathematics, World Scientific,2005.

[12]Y.Y.Li and L.Nirenburg,The dustance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm.Pure Appl.Math.58(2005),85-146.

[13]P.L.Antonelli,R.S.Ingarden and M.Matsumoto,The theory of sprays and Finsler spaces with lications in physics and biology, Kluwer AcademicPublishers,1993.

[14]Xinyue Cheng, Xiaohuan Mo and Zhongmin Shen,On the flag curvature of Finsler metrics of scalar Curvature, J.London Math.Soc.68(2)(2003),762-780.

[15]Xinyue Cheng and Z.Shen,Randers metrics with special cruvature properties,Osaka J.of Mathematics, 40(2003),87—101.

[16]P.Foulon,Curvature and global rigidity in Finsler geometry, Houston J.Math.28(2002),263-292.

[17]Z.Shen.Lectures on Finsler geometry,Worl Scientific Publishers,2001.

[18]Mo Xianhuan and Z.Shen,On negatively curved Finsler manifolds of scalar curvature, Canadian Math. Bull.(to ear).

请看一下这些数据是时间序列数据还是面板数据?

本文是对 参考原文链接 这篇文章的翻译。如有疑问或译文有误,可留言修正。

本文尝试这些基本概念1)似然比检验2)Wald检验3)分数检验。

一位研究员想要估计下面这个模型, 该模型使用 gender , read , math , science 四个预测变量预测学生在标准测试中的 High vs low writing score 。 模型结果如图1.

现在研究员想知道,图1中的模型(使用4个预测变量)会不会比只使用两个预测变量( gender , read )时的模型更显著。研究员将如何进行这种比较呢? 有三种常用检验可以用来检验这类问题, 他们是 似然比检验LR , Wald检验 和 拉格朗日乘子检验(有时也叫分数检验) 。这些设检验有时被描述成检验嵌套子模型区别的的检验,因为模型中的一个了可以理解成被内嵌在另一个模型中。就像两个预测变量的模型其实可理解成是四个预测变量的子模型,那么想要知道嵌套子模型与全变量模型的好坏区别就可以使用上述的三种检验去做评估。

上述三种检验都通过比较模型的似然值来评估他们的拟合度。似然是一个概率,表达的是已知某种结果对应某个参数估计值的概率(具体理解 见图2)。模型的目标是找到一个参数值(系数)使得似然函数值最大,也就是说找到一组参数可以最大程度的近似数据集。很多应用程序使用对数似然函数,而不是似然函数, 这是因为对数似然函数计算起来更方便。对数似然函数永远是负数,值越大(越接近于0)表明拟合模型更好。 尽管上面图1中的模型是逻辑回归,但这些检验方法非常通用,可以应用于具有似然函数的任何模型。

上面已经提到过, 似然函数是参数与数据的函数。当数据集一旦确定就不再改变, 可以改变系数估计值使得似然函数达到最大值。 不同的参数值,或者估计值的集合将对应不同的似然概率。如图3所示, 图中曲线体现出对数似然值随着参数a的变化而变化的趋势。X轴是参数a的值,Y轴是参数a取某值时对应的似然函数值。大多数模型都多个参数但如果模型中的其他参数固定不变,改变其中一个参数如a时就会呈现出图3中的相似的曲线。垂直的这条线标记出最大似然值对应的a的取值。

似然比检验(以后简写为LR)被用来评估两个模型并且比较两个模型的拟合效果。从一个模型中删除掉几个预测变量往往会使模型拟合效果变差(比如,会得到一个更小的对数似然概率),但这对于检验所观察的模型拟合度是否具有统计显著性来说是必要的。 LR通过这种方式来比较两个模型的对数似然值来检验两个模型, 如果此差异(两个模型的对数似然值差异)是统计显著的,那么限制性更小的模型(参数更多的模型)相对限制性更大的模型对数据的拟合更好。 如果你已经有了一个模型的对数似然值,那么LR检验值就很容易计算了。LR检验统计值计算公式如下:

其中 指对应模型的似然函数值, 表示模型的自然对数似然函数值。 指系数少的模型, 表示系数更多的模型。

检验统计结果服从卡方分布,自由度等于受约束的参数个数,比如这里相对全变量模型,只有2个参数的模型少了两个变量, 所以自由度为2, 所以检验统计结果服从自由度为2的卡方分布。

使用上面的两个模型,使用LR检验他们的差异。模型1是只使用两个 gender 和 read 两个变量的模型(没有 math 和 science ,我们将它们的系数限制为0),图4是模型1的结果, 结果中标记出了对数似然函数值(我们不对模型结果进行解释, 这不是文章的目的)。

现在再运行模型2, 模型2中使用4个预测变量,图5是模型结果。同样我们仅标记出模型2的对数似然值,并不对模型的做过多的解释。

既然有了两个模型的对数似然值, 我们可以计算LR。 代入公式我们有

即我们的似然比是36.05(服从自由度为2的卡方分布)。 我们现在可使用一张表或者其它手段得知36.05对应的 , 这表示全变量模型相对两个变量的子模型拟合数据更显著。 值得注意的是, 很多统计工具包会都会计算两个模型的LR检验去比较两个模型, 我们现在手动做是因为它计算简单且可以更好的帮助理解似然比检验的工作原理。

Wald与LR相似,但比LR要简单, 因为它只需要评估一个模型。Wald通过检验的工作原理是检验一组参数等于某个值的零设。对被检测的模型来说, 零设是指感兴趣的两个系数是否同时为零。 如果检验结果无法拒绝零设, 表明移除这两个变量将不会严重影响模型对数据的拟合效果, 因为相对系数标准差很小的系数通常对因变量的预测没有太大帮助。Wald的计算公式相对LR来说有点繁琐所以这里不会列出, 可参考(Fox, 19, p569)。为了让大家直观的感受Wald如何工作,它会测试标准误差下估计参数距离0有多远(或者是零设下的其他值),wald的结果和其他回归结果的设检验很类似。只不过wald可以同时检验多个参数, 而经典的做法是在回归结果中一次只检验一个参数 。 图6显示了四个变量的模型, 也不是模型2的结果。

图7中第一部分列出了wald检验的零设, 即 math和science对应的系数同时为0 。 第二部分列出了模型2执行wald检验后的卡方分布值为27.53,其对应的自由度为2的卡方分布的 p_value=0.0000 ,即p值掉入拒绝域, 我们可以拒绝两个参数同时为0的设。 因为包括具有统计意义的预测变量应该会导致更好的预测(即更好的模型拟合),所以我们可以得出结论,包括 math 和 science 变量会使模型拟合的统计得到显著改善。

与Wald检验一样,Lagrange乘数检验仅需要估计一个模型。区别在于,使用拉格朗日乘数检验时,估计的模型不包含感兴趣的参数。这意味着,在我们的示例中,我们可以使用拉格朗日乘数检验来测试在仅使用 gender 并将其作为预测变量运行的模型之后,向模型中添加 science 和 math 是否会导致模型拟合度显著改善。基于在模型中变量( female 和 read )的观察值处的似然函数的斜率来计算测试统计量。该估计的斜率或“分数”是拉格朗日乘数测试有时称为得分测试的原因。如果在模型中包括其他变量,则将分数用于估计模型拟合的改进。如果将变量或变量集添加到模型,则测试统计量是模型卡方统计量的预期变化。因为如果将当前遗漏的变量添加到模型中,它会测试模型拟合的改进,所以拉格朗日乘数检验有时也称为遗漏变量的检验。它们有时也称为修改索引,尤其是在结构方程建模文献中。图8是使用变量female和作为hiwrite的预测变量读取的逻辑回归模型的输出(与LR测试的模型1相同)。

运行上述模型后,我们可以查看拉格朗日乘数测试的结果。与前两个测试不同,前两个测试主要用于在向模型中添加多个变量时评估模型拟合的变化,而拉格朗日乘数测试可以用于测试模型拟合的预期变化(如果一个或多个参数为当前受限的被允许自由估计。在我们的示例中,这意味着测试向模型添加 math和science 是否会显着改善模型拟合。图10是分数测试的输出。表中的前两行提供了将单个变量添加到模型的测试统计信息(或分数)。为了继续我们的示例,我们将重点关注第三行中标记为“同时测试”的结果,该结果显示了在模型中同时添加数学和科学的测试统计量。将数学和科学都添加到模型的测试统计量为35.51,它是卡方分布的,自由度等于要添加到模型中的变量的数量,因此在我们的示例中为2。p值低于典型的截止值0.05,表明在模型中包含数学和科学变量将在模型拟合方面产生统计学上的显着改善。该结论与LR和Wald检验的结果一致。

如上所述,这三个测试都解决了相同的基本问题,即是否将参数约束为零(即忽略这些预测变量)会降低模型的拟合度?它们的区别在于他们如何回答该问题。如您所见,为了执行似然比检验,必须估计一个人希望比较的两个模型。 Wald和Lagrange乘数(或分数)检验的优势在于,它们近似于LR检验,但只需要估计一个模型即可。 Wald和Lagrange乘数检验在渐近上都等同于LR检验,也就是说,随着样本量变得无限大,Wald和Lagrange乘数检验统计的值将越来越接近LR检验的检验统计量。在有限的样本中,这三个样本往往会产生不同的检验统计量,但通常得出相同的结论。三种检验之间的有趣关系是,当模型为线性时,三种检验统计量具有以下关系Wald≥LR≥评分(Johnston和DiNardo 19,第150页)。也就是说,Wald检验统计量将始终大于LR检验统计量,而LR检验统计量将始终大于分数测试中的检验统计量。当计算能力受到更大限制,并且许多模型需要很长时间才能运行时,能够使用单个模型来近似LR测试是一个相当大的优势。如今,对于大多数研究人员可能想要比较的模型而言,计算时间已不再是问题,我们通常建议在大多数情况下运行似然比检验。这并不是说永远不要使用Wald或成绩测试。例如,Wald检验通常用于对用于建模回归中的预测变量的虚拟变量集执行多自由度测试(有关更多信息,请参阅我们的《关于Stata,SPSS和SAS回归的网络手册》,特别是第3章–使用分类预测变量进行回归。)分数测试的优势在于,当候选变量数量很大时,它可用于搜索省略的变量。

更好地了解这三个测试之间如何关联以及它们如何不同的一种方法是查看它们所测试内容的图形表示。上图说明了这三个测试的每一个。沿x轴(标记为“ a”)是参数a的可能值(在我们的示例中,这是数学或科学的回归系数)。沿y轴是与a的那些值相对应的对数似然值。 LR测试将模型的对数似然率与参数a的值(被限制为某个值(在我们的示例中为零))与自由估计a的模型进行比较。它通过比较两个模型的可能性高度来查看差异是否在统计上显着(请记住,可能性值越高表示拟合越好)。在上图中,这对应于两条虚线之间的垂直距离。相反,Wald测试将参数估计值a-hat与a_0进行比较; a_0是零设下a的值,通常设a =0。如果a-hat与a_0明显不同,则表明自由估计a(使用a-hat)可显着改善模型拟合。在图中,这表示为x轴上a_0和a-hat之间的距离(由实线突出显示)。最后,当a受到约束(在我们的示例中为零)时,得分测试着眼于对数似然率的斜率。也就是说,它查看了在(零)设的a值处改变可能性的速度。在上图中,这显示为a_0处的切线。

请大家告诉我我十位中外数学家及其生平资料(100至150字)

这要看你的数据是选取的是1998-2010年单一某地碳排放量(Y)和GDP(X)的数据,还是多个地方的数据了。前者是时间序列数据后者是面板数据(时间序列数据是指同一解释变量在不同时点上同一地点的观测值,简单来讲就是仅仅是某地的Y和X的数据;而面板数据指的是同一解释变量在不同时点上多个地点的观测值,比如Y和X选的是多个省的数据)。应该能看懂吧。

对于第二个问题:协整性检验和平稳性检验选取的变量是一样的。

协整分析需要首先检验各个序列的平稳性,即进行单位根检验。对多变量来说一般可以用ADF检验和PP检验。

其次,再进行各个变量之间的协整检验。协整检验的方法有EG两步法和JJ检验法。EG两步法一般是针对两个变量之间的协整关系进行检验,对于3个或以上的变量一般用JJ检验法。

再次,利用向量误差修正模型(VECM)建立各个变量之间的短期均衡关系,将长期均衡关系作为误差纠正项纳人方程中,以反应短期波动偏离长期均衡的程度。接着,可以利用Wald检验对误差修正模型各方程系数的显著性进行联合检验,从而判别各变量因果关系的方向。

想要补充几个一定要提的数学家,介绍长度过长是一定的了,因为觉得不那样根本介绍不了他们。至于怎么截取到100-150字,就要楼主自己看看怎么能缩了。

卡尔?弗里德里希?高斯(Johann Carl Friedrich Gauss)

数学王子

1777年4月30日生于不伦瑞克,1855年2月23日卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。高斯被认为是最重要的数学家,并有「数学王子」的美誉。

1792年,15岁德高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根大学。1796年,17岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。

高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债帐目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。

哥廷根大学当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学,即非欧几里德几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁其便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功的用尺规构造出了规则的17角形。

高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff**(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子Joseph。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。

虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。

高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896)、Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日她的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。

高斯的贡献

18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

在高斯19岁时,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。

高斯总结了复数的应用,并且严格证明了每一个n阶的代数方程必有n个实数或者复数解。在他的第一本着名的著作《算术研究》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。

高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”(Ceres)来命名它,即谷神星(Planetoiden Ceres),并将以前观测的位置发表出来,希望全球的天文学家一起寻找。高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。奥地利天文学家 Heinrich Olbers在高斯的计算出的轨道上成功发现了这颗小行星。从此高斯名扬天下。高斯将这种方法著述在著作《天体运动论》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。

为了获知任意一年中复活节的日期,高斯推导了复活节日期的计算公式。

在1818年至1826年之间高斯主导了汉诺威公国的大地测量工作。通过他发明的以最小二乘法为基础的测量平差的方法和求解线性方程组的方法,显着的提高了测量的精度。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计作出改进,试制成功被广泛应用于大地测量的镜式六分仪。

高斯亲自参加野外测量工作。他白天观测,夜晚计算。五六年间,经他亲自计算过的大地测量数据,超过100万次。当高斯领导的三角测量外场观测已走上正轨后,高斯就把主要精力转移到处理观测成果的计算上来,并写出了近20篇对现代大地测量学具有重大意义的论文。在这些论文中,推导了由椭圆面向圆球面投影时的公式,并作出了详细证明,这套理论在今天仍有应用价值。汉诺威公国的大地测量工作直到1848年才结束,这项大地测量史上的巨大工程,如果没有高斯在理论上的仔细推敲,在观测上力图合理精确,在数据处理上尽量周密细致的出色表现,就不能完成。在当时条件下布设这样大规模的大地控制网,精确地确定2578个三角点的大地坐标,可以说是一项了不起的成就。

日光反射仪由于要解决如何用椭圆在球面上的正形投影理论解决大地测量问题,高斯亦在这段时间从事曲面和投影的理论,这成了微分几何的重要基础。他独自提出不能证明欧氏几何的平行公设具有‘物理的’必然性,至少不能用人类理智,也不能给予人类理智以这种证明。但他的非欧几何的理论并没有发表,也许是因为对处于同时代的人不能理解对该理论的担忧。后来相对论证明了宇宙空间实际上是非欧几何的空间,高斯的思想被近100年后的物理学接受了。当时高斯试图在汉诺威公国的大地测量中通过测量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但未成功。高斯的朋友鲍耶的儿子雅诺斯在1823年证明了非欧几何的存在,高斯对他勇于探索的精神表示了赞扬。1840年,罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的著作,从这一年开始,63岁的高斯开始学习俄语,并最终掌握了这门外语。最终高斯成为和微分几何的始祖(高斯,雅诺斯、罗巴切夫斯基)中最重要的一人。

高斯和韦伯19世纪的30年代,高斯发明了磁强计,辞去了天文台的工作,而转向物理研究。他与韦伯(1804-1891)在电磁学的领域共同工作。他比韦伯年长27岁,以亦师亦友的身份进行合作。1833年,通过受电磁影响的罗盘指针,他向韦伯发送了电报。这不仅仅是从韦伯的实验室与天文台之间的第一个电话电报系统,也是世界首创。尽管线路才8千米长。1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置,并于次年得到美国科学家的证实。

高斯和韦伯共同设计的电报高斯研究数个领域,但只将他思想中成熟的理论发表。他经常提醒他的同事,该同事的结论已经被自己很早的证明,只是因为基础理论的不完备性而没有发表。批评者说他这样是因为极爱出风头。实际上高斯已将他的结果都记录起来。在他死后,有20部这样的笔记被发现,才证明高斯的宣称是事实。一般认为,即使这20部笔记,也不是高斯全部的笔记。下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数字化并置于互联网上。

高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上。

莱昂哈德?欧拉(Leonhard Euler)

支配者

1707年4月15日-1783年9月18日,瑞士数学家和物理学家。他被称为历史上最伟大的两位数学家之一(另一位是卡尔?弗里德里克?高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = f(x)(函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。

欧拉出生于瑞士,在那里受教育。欧拉是一位数学神童。他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡。欧拉是史上发表论文数第二多的数学家,全集共计75卷;他的纪录一直到了20世纪才被保罗?艾狄胥打破。他发表的论文达856篇(另一说865篇),著作有32部(另一说31部)。产量之多,无人能及。欧拉实际上支配了18世纪至现在的数学;对于当时新发明的微积分,他推导出了很多结果。在1735年至1771年,欧拉的双眼先后失明(据说是因双眼直接观察太阳)。尽管人生最后七年,欧拉的双目完全失明,他还是以惊人的速度产出了生平一半的著作。

很多数学的分技,也是由欧拉所创或因而有大大的进展。

欧拉年轻时曾研读神学,他一生虔诚、笃信上帝并不能容许任何诋毁上帝的言论在他面前发表。有一个广泛流传的传说说到,欧拉在叶卡捷琳娜二世的宫廷里,挑战当时造访宫廷的无神论者德尼?狄德罗:“先生,,所以上帝存在。这是回答!”不懂数学的德尼完全不知怎麼应对,只好投降。

1783年9月18日,晚餐后,欧拉一边喝着茶,一边和小孙女玩耍,突然之间,烟斗从他手中掉了下来。他说了一句:“我死了”,随即“欧拉停止了生命和计算”。后面这句经常被数学史家引用的话,出自法国哲学家兼数学家孔多塞之口:"...il cessa de calculer et de vivre," (he ceased to calculate and to live)小行星欧拉2002是为了纪念欧拉而命名的。

格奥尔格?弗雷德里希?波恩哈德?黎曼 (Georg Friedrich Bernhard Riemann)

猜想者?

1826年9月17日-1866年7月20日,德国数学家,对数学分析和微分几何做出了重要贡献,其中一些为广义相对论的发展铺平了道路。他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,黎曼映照定理,黎曼-希尔伯特问题,黎曼思路回环矩阵和黎曼曲面中。

他出生于汉诺威王国(今德国下萨克森州)的小镇布列斯伦茨(Breselenz)。他的父亲弗雷德里希?波恩哈德?黎曼是当地的路德会牧师。他在六个孩子中排行第二。

1840年,黎曼搬到汉诺威和祖母生活并进入中学学习。1842年祖母去世后,他搬到吕内堡(Lüneburg)的约翰纽姆(Johanneum)。1846年,按照父亲的意愿,黎曼进入哥廷根大学学习哲学和神学。在此期间他去听了一些数学讲座,包括高斯关于最小二乘法的讲座。在得到父亲的允许后,他改学数学。

1847年春,黎曼转到柏林大学,投入雅戈比、狄利克雷和Steiner门下。两年后他回到哥廷根。

1854年他初次登台作了题为“论作为几何基础的设”的演讲,开创了黎曼几何,并为爱因斯坦的广义相对论提供了数学基础。他在1857年升为哥廷根大学的编外教授,并在1859年狄利克雷去世后成为正教授.1862年,他与爱丽丝?科赫(Elise Koch)结婚。

1866年,他在第三次去意大利的的途中因肺结核在塞拉斯卡(Selasca)去世。

关于黎曼的常用定理有:

Riemann hypothesis

Riemann zeta function

Riemann integral

Riemann sum

Riemann lemma

Riemannian manifold

Riemann ming theorem

Riemann-Hilbert problem

Riemann-Hurwitz formula

Riemann-von Mangoldt formula

Riemann surface

Riemann-Roch theorem

Riemann theta function

Riemann-Siegel theta function

Riemann's differential equation

Riemann matrix

Riemann sphere

Riemannian metric tensor

Riemann curvature tensor

Cauchy-Riemann equations

Hirzebruch-Riemann-Roch theorem

Riemann-Lebesgue lemma

Riemann-Stieltjes integral

Riemann-Liouville differintegral

Riemann series theorem

Riemann's 1859 paper introducing the complex zeta function

Prime Obsession

奥古斯丁?路易?柯西(Augustin Louis Cauchy)

定理量产者

1789年8月21日生于巴黎;1857年5月23日卒于塞纳省索镇。1805年柯西进入高等工业学校学习,安培是他的一位老师。他原来打算成为土木工程师,但是他的身体很差,他的朋友拉格朗日和拉普拉斯劝他转向搞不要求身体特别好的纯粹数学。

他的数学的一个重要方面是紧密结合物理学。他第一个企图给以太的性质奠定数学基础。以太是一种既容许光波又容许行星穿过自身的一种猕散状固体,他的工作使得科学家有可能接受以太而不失体面。但是这个理论并不完全令人满意。

后来有许多人(像麦克斯韦)力图改进它都没有得到完全的成功。事实上,没有任何以太理论成功过,柯西死后二十多年,迈克耳孙和莫利的实验使这个问题更加难办。一个世纪以来,物理学家处在这样一种无情的矛盾之中:一方面显然需要以太来解释光的性质,另一方面显然不可能有这么样的以太具有如此矛盾的性质。最终需要爱因斯坦的理论把他们解放出来。 柯西的晚年由于政治上的争论而受到围攻,因为他在政治方面和在宗教方面都是极端地的保守。他是波旁王朝的热情追随者。当波旁家系的最后一个法国国王查理十世(他封柯西为男爵)1830年亡命国外时,柯西也亡命到意大利,以避免宣誓效忠于新王路易?菲力普。

1838年柯西回到法国。1848年,拿破仑一世的侄子路易?拿破仑掌了权当上第二共和国的总统,后来又帝为拿破仑三世,柯西都没有宣誓效忠,如阿拉戈一样,但确实接到了法兰西学院的教授的任命。

柯西是个超级量产型人物,相关定理有:

Cauchy integral theorem

Cauchy's integral formula

Cauchy-Schwarz inequality

Cauchy's theorem (group theory)

Cauchy's theorem (geometry)

Cauchy distribution

Cauchy determinant

Cauchy formula for repeated integration

Cauchy sequence

Cauchy-Riemann equations

Cauchy-Frobenius lemma

Cauchy product

Cauchy principal value

Cauchy-Binet formula

Cauchy-Euler equation

Cauchy's equation

Cauchy problem

Cauchy horizon

Cauchy boundary condition

Cauchy surface

Cauchy-Kovalevskaya theorem

Maclaurin-Cauchy test

Cauchy's radical test

Cauchy (crater)

Cauchy functional equation

Cauchy-Peano theorem

Cauchy argument principle

Nyquist stability criterion

艾萨克?牛顿爵士(Sir Isaac Newton)

家传户晓!

1643年1月4日—1727年3月31日,英国数学家、科学家和哲学家,同时是当时炼金术热衷者。他在1687年7月5日发表的《自然哲学的数学原理》里提出的万有引力定律以及他的牛顿运动定律是经典力学的基石。牛顿还和莱布尼茨各自独立地发明了微积分。他总共留下了50多万字的炼金术手稿和100多万字的神学手稿。

牛顿被誉为人类历史上最伟大的科学家之一。他的万有引力定律在人类历史上第一次把天上的运动和地上的运动统一起来,为日心说提供了有力的理论支持,使得自然科学的研究最终挣脱了宗教的枷锁。

牛顿还发现了太阳光的颜色构成,还制作了世界上第一架反射望远镜。

牛顿出生于英格兰林肯郡的小镇乌尔斯普。在牛顿出生之前三个月,他的父亲就去世了,两年之后他的母亲改嫁他人,把牛顿留给了他的祖母。牛顿的天才很早就展现出来。

牛顿最开始在乡村学校读书,12岁时候离家到格兰瑟文法学校就读。在格兰瑟他寄宿在当地的一个药剂师家中并最终和这名药剂师的继女订了婚。1661年,也就是19岁的时候,牛顿进入剑桥大学三一学院学习。在那里,牛顿沉浸在学习之中而疏忽了未婚妻,他的未婚妻就嫁给了别人。牛顿终身未婚。

在那个时代,大学里仅仅教授亚里士多德的理论,但是牛顿对于当代哲学家的思想更感兴趣,比如,笛卡尔、伽利略、哥白尼、开普勒等等。在1665年他发现了二项式定理,同一年他获得了文学学士学位。不久就爆发了瘟疫,学校被迫关闭,牛顿回到家乡继续他的研究。在接下来的两年之内,牛顿在微积分、光学和重力问题上做出了卓越的工作。

1667年牛顿重返剑桥大学。1669年10月27日牛顿被选为卢卡斯数学教授。1672年起他被接纳为英国学会会员,1703年被选为学会直到逝世。

1696年牛顿任造币厂监督,1699年升任厂长,1705年因改革币制有功受封为爵士。

1727年3月31日,牛顿因患肾结石症医治无效,在伦敦郊区肯辛顿寓中逝世,葬于伦敦威斯敏斯特教堂。

牛津对于数学最大的贡献莫过于微积分的创立和推动应用数学的发展,虽然微积分的符号使用的是戈特弗里德?威廉?莱布尼茨所创。

亚里士多德(希腊语:Αριστοτ?λη?,英语:Aristotle)

先知?先驱!

前384年—前322年3月7日,是著名的古希腊哲学家,他是柏拉图的学生、也是亚历山大帝的老师。一个并非数学家的全能数学家,从逻辑引发出真正的数学。他在许多领域都留下广泛著作,包括了物理学、形而上学、诗歌(包括戏剧)、生物学、动物学、逻辑学、政治、、以及学。

苏格拉底、柏拉图、以及亚里士多德三人被广泛认为是西方哲学的奠基者。一些人认为亚里士多德发展出的学派是柏拉图哲学思想的延伸,一些人则认为柏拉图和亚里士多德两人所代表的是古代哲学里最主要的两大学派。

亚里士多德在前384年生于色雷斯的斯塔基拉(Stagira),父亲是马其顿王的御医。从小亚里士多德在贵族家庭环境里长大。在18岁的时候,亚里士多德被送到雅典的柏拉图学园学习,此后20年间亚里士多德一直住在学园,直至老师柏拉图在前347年去世。柏拉图去世后,由于学园的新首脑比较同情柏拉图哲学中的数学倾向,令亚里士多德无法忍受,便离开雅典。但是从亚里士多德的著作中可以看到,虽然亚里士多德不同意波西普斯等学园新首脑的观点,但依然与他们保持良好的关系。

离开学园后,亚里士多德先是接受了先前的学友赫米阿斯的邀请访问小亚细亚。赫米阿斯当时是小亚细亚沿岸的密细亚的统治者。亚里士多德在那里还娶了赫米阿斯的侄女为妻。但是在公元前344年,赫米阿斯在一次中被谋杀,亚里士多德不得不离开小亚细亚,和家人一起到了米提利尼。3年后,亚里士多德又被马其顿的国王腓力浦二世召唤会故乡,成为当时年仅13岁的亚历山大大帝的老师。根据古希腊著名传记作家普鲁塔克的记载,亚里士多德对这位未来的世界领袖灌输了道德、政治以及哲学的教育。亚里士多德也运用了自己的影响力,对亚历山大大帝的思想形成起了重要的作用。正是亚里士多德的在影响下,亚历山大大帝始终对科学事业十分关心,对知识十分尊重。但是,亚里士多德和亚历山大大帝的政治观点或许并不是完全相同的。前者的政治观是建筑在即将衰亡的希腊城邦的基础上的,而亚历山大大帝后来建立的中央集权帝国对希腊人来说无异是野蛮人的发明。

公元前335年腓力浦去世,亚里士多德又回到雅典,并在那里建立了自己的学校。学园的名字(Lyceum)以阿波罗神殿附近的杀狼者(吕刻俄斯)来命名。在此期间,亚里士多德边讲课,边撰写了多部哲学著作。亚里士多德讲课时有一个习惯,即边讲课,边漫步于走廊和花园,正是因为如此,学园的哲学被称为“逍遥的哲学”或者“漫步的哲学”。亚里士多德的著作在这一期间也有很多,主要是关于自然和物理方面的自然科学和哲学,而使用的语言也要比柏拉图的《对话录》晦涩许多。他的作品很多都是以讲课的笔记为基础,有些甚至是他学生的课堂笔记。因此有人将亚里士多德看作是西方第一个教科书的作者。虽然亚里士多德写下了许多对话录,但这些对话录都只有少数残缺的片段流传下来。被保留最多的作品主要都是论文形式,而亚里士多德最初也没有想过要发表这些论文。一般认为这些论文是亚里士多德讲课时给学生的笔记或课本。

亚里士多德不只研究了当时几乎所有的学科,他也对这些学科做出极大的贡献。在科学上,亚里士多德研究了解剖学、天文学、经济学、胚胎学、地理学、地质学、气象学、物理学、和动物学。在哲学上亚里士多德则研究了美学、学、政治、、形而上学、心理学、以及神学。亚里士多德也研究教育、文学、以及诗歌。亚里士多德的生平著作加起来几乎就成了一部希腊人知识的百科全书。一些人还认为亚里士多德可能是在那个时代里最后一个精通所有学科和既有智慧的人了。

亚历山大死后,雅典人开始奋起反对马其顿的统治。由于和亚历山大的关系,亚里士多德不得不因为被指控不敬神而逃亡加而西斯(Chalcis)避难,他的学园则交给了狄奥弗拉斯图掌管。亚里士多德说他会逃离是因为:「我不想让雅典人再犯下第二次毁灭哲学的罪孽。」(隐喻之前苏格拉底之死)不过在一年之后的公元前322年,亚里士多德因为多年积累的一种疾病而去世。亚里士多德还留下一个遗嘱,要求将他埋葬在妻子坟边。